Design, Simulation, and Stability of a Hexapedal Running Robot
نویسندگان
چکیده
Animals are the current gold standard of locomotion ability. Their ability to navigate rough terrain is unmatched by their man-made counterparts. Recent studies by biologists have begun to demonstrate some of the principles behind their remarkable capabilities. In particular, studies of cockroaches have shown that they use a feed-forward motor actuation pattern that is virtually unchanged, even when running over very rough terrain. It appears that their considerable structural compliance contributes significantly to their stability when running. Their sprawled posture and tuned impedance in their musculoskeletal system enable an instantaneous or preflex response to disturbances. This allows for rapid response to the large perturbations experienced when interacting with irregular terrain. Consideration of these principles has led to the design of the Sprawl family of robots, which features one active thruster and one entirely passive rotary joint on each leg. Without these spring elements the robots would not be able to run. With them, they can easily overcome hip-height obstacles without any alteration of their open-loop controller. The robots function as tuned oscillating systems and small changes in their physical parameters (e.g. leg stiffness and damping) can produce large changes in their speed and stability. Simple conceptual models of hopping have been used to analyze the effects of modifying the open-loop control system on system performance. These simple onelegged models have proven effective in helping to tune the actuation dynamics of the robot, but their simplicity precludes their use in tuning the sprawled self-stabilizing posture of the robot. This thesis describes the development, calibration, and analysis of a three-dimensional
منابع مشابه
Towards robust hexapedal running with serial elastic actuation: A 3D simulation study
The legs of a future generation of hexapedal robots should enable highly articulated walking as well as robust running within the same platform. Following a hypothesis from biology [2], robustness and stability of walking mainly result from feedback control while being anchored in selfstabilizing properties of the feedforward driven mechanical structure in case of running. The advantage of this...
متن کاملThe Effect of Leg Specialization in a Biomimetic Hexapedal Running Robot
The biologically inspired Sprawl family of hexapedal robots has shown that fast and stable running is possible with only open-loop control. Proper design of the passively self-stabilizing leg structure has enabled these robots to run at speeds of up to 15 bodylengths/s and over uneven terrain. Unlike other running robots built to date, the Sprawl robots’ front and rear legs are designed to pref...
متن کاملTemplate based control of hexapedal running
In this paper, we introduce a hexapedal locomotion controller that simulation evidence suggests will be capable of driving our RHex robot at speeds exceeding five body lengths per second with reliable stability and rapid maneuverability. We use a low dimensional passively compliant biped as n "template" a control target !or the alternating tripod gait of the physical machine. We impose upon the...
متن کاملDesign of a Tunable Stiffness Composite Leg for Dynamic Locomotion
Passively compliant legs have been instrumental in the development of dynamically running legged robots. Having properly tuned leg springs is essential for stable, robust and energetically efficient running at high speeds. Recent simulation studies indicate that having variable stiffness legs, as animals do, can significantly improve the speed and stability of these robots in changing environme...
متن کاملStability Measure Comparison for the Design of a Dynamic Running Robot
Estimating the effect of design changes on the stability of robots designed to run over rough terrain is a difficult task. No current predictor or measure is currently universally accepted. The most common techniques, including the ‘stability margins’ commonly used in walking machines and the return-map eigenvalue analysis used on simple models, are not fully applicable to these fast and comple...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004